Муниципальное бюджетное общеобразовательное учреждение «Городищенская средняя школа С углубленным изучением отдельных предметов № 3»

УТВЕРЖДЕНА на заседании научно-методического совета МБОУ ГСШ № 3. Протокол от 31,08.2020 № 1.

ислева Е.В. Толмачева

Введена в действие приказом учреждения от 31.08.2020 № 192.

Директор

- О.В. Зимарина

АДАПТИРОВАННАЯ РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика» для обучающихся с задержкой психического развития (вариант 6.2).

7 – 9 классы

Учитель физики: Алексеева Оксана Борисовна

Городище

Адаптированная рабочая программа учебного предмета «Физика» для обучающихся с задержкой психического развития (далее – АРП) разработана в соответствии с:

- ▶ Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- ➤ постановлением Главного государственного санитарного врача Российской Федерации от 29.12.2010 № 189 «Об утверждении Санитарно-эпидемиологических требований к условиям и организации обучения в общеобразовательных учреждениях «Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10» (с изменениями и дополнениями);
- постановлением Главного государственного санитарного врача Российской Федерации от 10.07.2015 № 26 «Об утверждении Санитарно-эпидемиологических правил и нормативов СанПиН 2.4.2.3286-15 «Санитарно-эпидемиологические требования к условиям и организации обучения и воспитания в организациях, осуществляющих образовательную деятельность по адаптированным основным общеобразовательным программам для обучающихся с ограниченными возможностями здоровья»;
- ▶ приказом Министерства образования и науки России от 17.12.2010 № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (с изменениями и дополнениями);
- ➤ письмом Министерства образования и науки России от 07.06.2013 № ИР-535/07 «О коррекционном и инклюзивном образовании детей»;
- распоряжением Министерства просвещения от 09.09.2019 № Р-93 «Об утверждении примерного Положения о психолого-педагогическом консилиуме образовательной организации»;
- ▶ приказом министерства образования и науки Волгоградской области от 30.07.2014 № 930 «Об организации инклюзивного образования лиц с ограниченными возможностями здоровья на территории Волгоградской области»;
- > уставом учреждения;
- ➤ Адаптированной основной образовательной программой основного общего образования обучающихся с задержкой психического развития (вариант 2) Муниципального бюджетного общеобразовательного учреждения «Городищенская средняя школа с углубленным изучением отдельных предметов № 3».

Реализация АРП предусматривает создание специальных условий обучения и воспитания, позволяющих учитывать индивидуальные возможности на основе особенностей психофизического развития, что поможет обеспечить социальную адаптацию и коррекцию нарушения развития обучающихся, в том числе обучающихся с ограниченными возможностями здоровья (далее – OB3).

Психолого-педагогическая характеристика обучающихся с ЗПР

По АРП обучаются дети, испытывающие в силу различных биологических и социальных причин стойкие затруднения в усвоении учебного материала при отсутствии выраженных нарушений интеллекта.

Обучающиеся указанной категории имеют негрубые (слабо выраженные) отклонения в функционировании центральной нервной системы, оказывающие негативное влияние на школьную и социальную адаптацию.

В рамках психолого-педагогической классификации трудности, которые испытывают эти обучающиеся в процессе обучения, могут быть обусловлены как недостатками эмоционально-волевой регуляции, самоконтроля, низким уровнем учебной мотивации и общей познавательной пассивностью, так и недоразвитием отдельных психических процессов: восприятия, внимания, памяти, мышления, негрубыми недостатками речи, нарушениями моторики в виде недостаточной координации движений, двигательной расторможенностью, низкой работоспособностью, ограниченным запасом знаний и представлений об окружающем мире, несформированностью операциональных компонентов учебно-познавательной деятельности.

Эти особенности провоцируют трудности в учебной деятельности, межличностной коммуникации и эмоционально-личностной сфере. В силу указанных факторов организация учебной деятельности имеет коррекционно-развивающую направленность, используемые педагогические технологии учитывают особенности обучающихся с задержкой психического развития.

Система работы с обучающимися с ЗПР направлена на формирование общих способностей к учебной деятельности, коррекцию индивидуальных недостатков развития, преодоление негативных особенностей эмоционально-личностной сферы, повышение работоспособности, активизацию познавательной деятельности.

Общие принципы и правила коррекционной работы:

- 1. Индивидуальный подход к обучающемуся.
- 2. Предотвращение наступления утомления, используя для этого разнообразные средства (чередование умственной и практической деятельности, преподнесение материала небольшими дозами, использование интересного и красочного дидактического материала и средств наглядности).
- 3. Использование методов, активизирующих познавательную деятельность учащихся, развивающих их устную и письменную речь и формирующих необходимые учебные навыки.
- 4. Проявление педагогического такта. Постоянное поощрение за малейшие успехи, своевременная и тактическая помощь каждому ребёнку, развитие в нём веры в собственные силы и возможности. Одним из основных принципов обучения является принцип сознательности и активности обучающихся.
- 5. Согласно этому принципу «обучение эффективно только тогда, когда обучающийся проявляет познавательную активность, являются субъектами обучения». Активность обучающегося должна быть направлена не просто на запоминание материала, а на процесс самостоятельного добывания знаний, исследования фактов, выявления ошибок, формулирование выводов. При подборе содержания занятий для обучающегося с ЗПР учитывается, с одной стороны, принцип доступности, а с другой стороны, уход от излишнего упрощения материала.
- 6. Обучающиеся с ЗРП в учреждении обучаются в рамках инклюзии.

В соответствии с письмом Министерства образования и науки России от 25.10.2015 № 08-1786 «О рабочих программах учебных предметов» и Положением о рабочей программе педагогического работника МБОУ ГСШ № 3 адаптированная рабочая программа включает следующие основные элементы:

- 1) планируемые предметные результаты освоения учебного предмета;
- 2) содержание учебного предмета с указанием форм организации учебных занятий, основных видов учебной деятельности;
- 3) календарно-тематическое планирование с указанием количества часов, отводимых на освоение каждой темы.

Планируемые предметные результаты освоения учебного предмета В результате изучения курса физики в основной школе: выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- ❖ распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ◆ ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и

формулировать выводы.

Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

- понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.

Примечание. Любая учебная программа должна обеспечивать овладение прямыми измерениями всех перечисленных физических величин.

- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- ❖ анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- ❖ понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- **⋄** использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы сети «Интернет».

Выпускник получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- размерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Раздел	Выпускник научится:	Выпускник получит
		возможность научиться:
Механические	- распознавать механические явления и объяснять на основе	- использовать знания о
явления	имеющихся знаний основные свойства или условия	механических явлениях в
	протекания этих явлений: равномерное и неравномерное	повседневной жизни для
	движение, равномерное и равноускоренное прямолинейное	обеспечения безопасности при
	движение, относительность механического движения,	обращении с приборами и
	свободное падение тел, равномерное движение по	техническими устройствами,
	окружности, инерция, взаимодействие тел, реактивное	для сохранения здоровья и
	движение, передача давления твердыми телами,	соблюдения норм
	жидкостями и газами, атмосферное давление, плавание тел,	экологического поведения в
	равновесие твердых тел, имеющих закрепленную ось	окружающей среде; приводить
	вращения, колебательное движение, резонанс, волновое	примеры практического
	движение (звук);	использования физических
	- описывать изученные свойства тел и механические	знаний о механических явлениях
	явления, используя физические величины: путь,	и физических законах; примеры
	перемещение, скорость, ускорение, период обращения,	использования возобновляемых
	масса тела, плотность вещества, сила (сила тяжести, сила	источников энергии;

трения), упругости, сила давление, импульс тела, энергия, энергия, кинетическая потенциальная механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость ее распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины:

- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил (нахождение равнодействующей силы), I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение:
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения, амплитуда, период и частота колебаний, длина волны и скорость распространения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

экологических последствий исследования космического пространств;

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных (закон законов сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) ограниченность использования частных законов (закон Гука, Архимеда и др.);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомномолекулярного учения о строении вещества и закон сохранения энергии;

- использовать знания тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами техническими устройствами, для сохранения здоровья соблюдения норм экологического поведения окружающей среде; приводить экологических примеры последствий работы двигателей внутреннего сгорания, тепловых гидроэлектростанций;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать

- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические и магнитные явления

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел. взаимодействие зарядов, электрический ток и его действия взаимодействие (тепловое, химическое, магнитное), магнитов, электромагнитная индукция, магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу, электромагнитные прямолинейное распространение света, отражение преломление света, дисперсия света;
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр);
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами:
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- решать задачи, используя физические законы (закон Ома Джоуля-Ленца, для участка цепи, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое электрическое напряжение, сопротивление, сопротивление вещества, работа электрического поля, мощность тока, фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами техническими устройствами, для сохранения здоровья соблюдения норм экологического поведения окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска формулировки доказательств выдвинутых гипотез теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического annapama, так и при помощи методов оценки.

	T .	
	задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.	
Квантовые явления	- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β- и γ-излучения, возникновение линейчатого спектра излучения атома; - описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины; - анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение; - различать основные признаки планетарной модели атома, нуклонной модели атомного ядра; - приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.	- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; - соотносить энергию связи атомных ядер с дефектом массы; - приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования; - понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного
Элементы астрономии	- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд; - понимать различия между гелиоцентрической и геоцентрической системами мира.	синтеза указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба; - различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой; - различать гипотезы о происхождении Солнечной системы.

Содержание учебного курса

Физика и физические методы изучения природы

Физика — наука о природе. Физические тела и явления. Наблюдение и описание физических явлений. Физический эксперимент. Моделирование явлений и объектов природы.

Физические величины и их измерение. Точность и погрешность измерений. Международная система единиц.

Физические законы и закономерности. Физика и техника. Научный метод познания. Роль физики в формировании естественнонаучной грамотности.

Механические явления

Механическое движение. Материальная точка как модель физического тела. Относительность механического движения. Система отсчета. Физические величины, необходимые для описания движения и взаимосвязь между ними (путь, перемещение, скорость, ускорение, время движения). Равномерное и равноускоренное прямолинейное движение. Равномерное движение по окружности. Первый закон Ньютона и инерция. Масса тела. Плотность вещества. Сила. Единицы силы. Второй закон Ньютона. Третий закон Ньютона. Свободное падение тел. Сила тяжести. Закон всемирного тяготения. Сила

упругости. Закон Гука. Вес тела. Невесомость. Связь между силой тяжести и массой тела. Динамометр. Равнодействующая сила. Сила трения. Трение скольжения. Трение покоя. Трение в природе и технике.

Импульс. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Энергия. Потенциальная и кинетическая энергия. Превращение одного вида механической энергии в другой. Закон сохранения полной механической энергии.

Простые механизмы. Условия равновесия твердого тела, имеющего закрепленную ось движения. Момент силы. *Центр тяжести тела*. Рычаг. Равновесие сил на рычаге. Рычаги в технике, быту и природе. Подвижные и неподвижные блоки. Равенство работ при использовании простых механизмов («Золотое правило механики»). Коэффициент полезного действия механизма.

Давление твердых тел. Единицы измерения давления. Способы изменения давления. Давление жидкостей и газов Закон Паскаля. Давление жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Вес воздуха. Атмосферное давление. Измерение атмосферного давления. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Гидравлические механизмы (пресс, насос). Давление жидкости и газа на погруженное в них тело. Архимедова сила. Плавание тел и судов Воздухоплавание.

Механические колебания. Период, частота, амплитуда колебаний. Резонанс. Механические волны в однородных средах. Длина волны. Звук как механическая волна. Громкость и высота тона звука.

Тепловые явления

Строение вещества. Атомы и молекулы. Тепловое движение атомов и молекул. Диффузия в газах, жидкостях и твердых телах. *Броуновское движение*. Взаимодействие (притяжение и отталкивание) молекул. Агрегатные состояния вещества. Различие в строении твердых тел, жидкостей и газов.

Тепловое равновесие. Температура. Связь температуры со скоростью хаотического движения частиц. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Теплопроводность. Конвекция. Излучение. Примеры теплопередачи в природе и технике. Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Закон сохранения и превращения энергии в механических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования и конденсации. Влажность воздуха. Работа газа при расширении. Преобразования энергии в тепловых машинах (паровая турбина, двигатель внутреннего сгорания, реактивный двигатель). КПД тепловой машины. Экологические проблемы использования тепловых машин.

Электромагнитные явления

Электризация физических тел. Взаимодействие заряженных тел. Два рода электрических зарядов. Делимость электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Проводники, полупроводники и изоляторы электричества. Электроскоп. Электрическое поле как особый вид материи. Напряженность электрического поля. Действие электрического поля на электрические заряды. Конденсатор. Энергия электрического поля конденсатора.

Электрический ток. Источники электрического тока. Электрическая цепь и ее составные части. Направление и действия электрического тока. Носители электрических зарядов в металлах. Сила тока. Электрическое напряжение. Электрическое сопротивление проводников. Единицы сопротивления.

Зависимость силы тока от напряжения. Закон Ома для участка цепи. Удельное сопротивление. Реостаты. Последовательное соединение проводников. Параллельное соединение проводников.

Работа электрического поля по перемещению электрических зарядов. Мощность электрического тока. Нагревание проводников электрическим током. Закон Джоуля - Ленца. Электрические нагревательные и осветительные приборы. Короткое замыкание.

Магнитное поле. Индукция магнитного поля. Магнитное поле тока. Опыт Эрстеда. Магнитное поле постоянных магнитов. Магнитное поле Земли. Электромагнит. Магнитное поле катушки с током. Применение электромагнитов. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Электродвигатель. Явление электромагнитной индукция. Опыты Фарадея.

Электромагнитные колебания. Колебательный контур. Электрогенератор. Переменный ток. Трансформатор. Передача электрической энергии на расстояние. Электромагнитные волны и их свойства. Принципы радиосвязи и телевидения. Влияние электромагнитных излучений на живые организмы.

Свет — электромагнитная волна. Скорость света. Источники света. Закон прямолинейного распространение света. Закон отражения света. Плоское зеркало. Закон преломления света. Линзы. Фокусное расстояние и оптическая сила линзы. Изображение предмета в зеркале и линзе. Оптические приборы. Глаз как оптическая система. Дисперсия света. Интерференция и дифракция света.

Квантовые явления

Строение атомов. Планетарная модель атома. Квантовый характер поглощения и испускания света атомами. Линейчатые спектры. Опыты Резерфорда.

Состав атомного ядра. Протон, нейтрон и электрон. Закон Эйнштейна о пропорциональности массы и энергии. Дефект масс и энергия связи атомных ядер. Радиоактивность. Период полураспада. Альфа-излучение. Бета-излучение. Гамма-излучение. Ядерные реакции. Источники энергии Солнца и звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Влияние радиоактивных излучений на живые организмы.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной. Гипотеза Большого взрыва.

Формы организации учебных занятий

Формы обучения:

- Индивидуальная или в паре,
- Групповая работы.

Типы уроков: усвоения нового материала; закрепления; повторения; контроля, проверки знаний; практические занятия, самостоятельная работа.

Традиционные методы обучения:

- 1. Словесные методы; рассказ, объяснение, беседа, работа с учебником.
- 2. Наглядные методы: наблюдение, работа с наглядными пособиями, презентациями.
- 3. Практические методы: устные и письменные упражнения, графические работы, анализ схем и таблиц.

Активные методы обучения: проблемные ситуации, обучение через деятельность, метод эвристических вопросов, метод исследовательского изучения, игровое проектирование и другие.

Основные виды учебной деятельности

- > прослушивание объяснений учителя;
- » работа с текстом учебника, дополнительной литературой и ресурсами сети «Интернет»,
- > анализ научно-популярной литературы;
- выполнение практических заданий;
- беседа по вопросам;
- игровая деятельность;
- ▶ выполнение устных и письменных заданий, в том числе творческих (по желанию);
- мини-исследования.

Календарно-тематическое планирование

Обучающиеся с ЗПР обучаются в учреждении в рамках инклюзии.

Обучающиеся с ЗПР на уровне основного общего образования обучаются в разных классах и на обучение по Адаптированной основной образовательной программе основного общего образования обучающихся с задержкой психического развития (вариант 2) Муниципального бюджетного общеобразовательного учреждения «Городищенская средняя школа с углубленным изучением отдельных предметов № 3» переведены на втором (или третьем) году обучения.

В связи с этим календарно-тематическое планирование адаптированной рабочей программы соответствует календарно-тематическому планированию соответствующего учебного предмета на уровне основного общего образования.

В соответствии с индивидуальными особенностями обучающегося, его динамикой развития и обучения, учитель вносит соответствующие коррективы в объем содержания обучения (подбор учебного материала, средств, педагогических приемов и методов обучения и т.д.), снижая учебную нагрузку и дозировку домашнего задания.

См раздел «Календарно-тематическое планирование» соответствующей рабочей программы на уровне основного общего образования.